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a b s t r a c t 

Background and Objectives: The retinal fundus contains intricate vascular trees, some of which are mu- 

tually intersected and overlapped. The intersection and overlapping of retinal vessels represent vascular 

junctions ( i.e. bifurcation and crossover) in 2D retinal images. These junctions are important for analyzing 

vascular diseases and tracking the morphology of vessels. In this paper, we propose a two-stage pipeline 

to detect and classify the junction points. 

Methods: In the detection stage, a RCNN-based Junction Proposal Network is utilized to search the poten- 

tial bifurcation and crossover locations directly on color retinal images, which is followed by a Junction 

Refinement Network to eliminate the false detections. In the classification stage, the detected junction 

points are identified as crossover or bifurcation using the proposed Junction Classification Network that 

shares the same model structure with the refinement network. 

Results: Our approach achieves 70% and 60% F1-score on DRIVE and IOSTAR dataset respectively which 

outperform the state-of-the-art methods by 4.5% and 1.7%, with a high and balanced precision and recall 

values. 

Conclusions: This paper proposes a new junction detection and classification method which performs 

directly on color retinal images without any vessel segmentation nor skeleton preprocessing. The superior 

performance demonstrates that the effectiveness of our approach. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Retinal fundus image is a unique type of images to observe

irculation system non-invasively. Vascular structure can be ob-

erved directly from the image and it can have different mor-

hology due to aging or diseases. Retinal vascular bifurcations and

rossovers are important feature points in retinal fundus images

s they can provide useful information to clinical diagnosis, such

s image analysis [1,2] and biological statistics [3,4] . For example,

idth changing of vessels at crossover can indicate arteriovenous

icking, which is one of the markers of hypertension retinopa-

hy. Bifurcations are necessary in the calculation of arteriolar-to-

enular ratio (AVR) which is an important measurement in clin-

cal study of cardiovascular diseases [5] . Feature points can also

e used to extract vessel topology [6] or for image registration [7] .

etection of retinal junctions is an important stage for vessel track-

ng [8] and vascular reconstruction. It provides essential informa-

ion to separate every single vessel tree, which is a fundamental

tep for most disease analysis in retinal images. Human assessment
∗ Corresponding author. 

E-mail address: huiqili@bit.edu.cn (H. Li). 

fi  

s  

m  

ttps://doi.org/10.1016/j.cmpb.2019.105096 

169-2607/© 2019 Elsevier B.V. All rights reserved. 
f junction points is a time-consuming and subjective task where

he variance of intra-grader and inter-grader also needs to be con-

idered. Thus, automatic detection and classification algorithm is

equired in clinical study. 

However, detecting junction points is challenging due to the

act that the condition of retinal image is very complex. The fea-

ure points are close to each other in some cases, or the contrast

etween the vessels and the background is too low. There has

een some research work on detecting junctions of retinal images,

nd most of them are starting from vessel segmentation map. By

bserving the process of this kind of methods, it can be noted that

hey are all heavily dependent on vessel segmentation and vascular

eometry. The segmentation-dependent method can produce good

etection on the well-segmented images ( e.g. vessel ground-truth).

owever, the performance will decrease a lot when segmentation

r skeleton generalization is not correct. Typical errors include

essel missing, disconnected or broken vessel segments. 

> In this paper, an approach to detect and classify vascular

unctions is proposed. Our contribution can be summarized as:

rst, our detection works on the original image rather than vessel

egmentation, which can avoid the mistakes caused by vessel seg-

entation or skeleton; second, a two-step detection workflow is

https://doi.org/10.1016/j.cmpb.2019.105096
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2019.105096&domain=pdf
mailto:huiqili@bit.edu.cn
https://doi.org/10.1016/j.cmpb.2019.105096
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proposed to determine the position of junctions, in which our re-

finement network is specially designed for retinal vessels so that it

can achieve a better performance than the single Junction Proposal

Network. Our approach has been tested on two public datasets

and the results outperform other state-of-the-art methods. 

2. Related work 

The existing methods of junction detection can be categorized

into two classes: skeleton-based method and model-based method.

The skeleton-based methods [9–13] usually count the number of

vessel segments within a certain area. They are highly dependent

on the segmentation and skeleton results. Inspired by simple cross-

point number detector, the work of [9] modify the configuration

and combine two scales detectors to make their method more ac-

curacy and robust. A two-step method for feature point detection

and classification is proposed in [10] , where filters and morpho-

logical operations are utilized for detection and the features based

on local and topological analysis are employed for identification.

A detection filter is designed by Baboiu et al. [14] based on scale-

space analysis and eigenvalue analysis of bifurcations. Focusing on

the misclassification of crossovers, Nguyen et al. [15] propose a

method that utilizes both local information and vascular geometri-

cal features to distinguish between bifurcation and crossover. Two

nearby bifurcations are grouped as a potential crossover and re-

examined by the angles between vessels near the junctions. In [16] ,

a branching point detector is proposed similarly as the skeleton-

based method, which is applied on the enhanced image instead of

vessel segmentation. To avoid the error caused by skeletonization,

Morales et al. [17] determine the skeleton using stochastic water-

shed transformation. The junction points are detected by template

matching and then classified into crossover and bifurcation by a

close loop checking. Researchers are working on novel segmenta-

tion methods [18,19] to obtain a better segmentation results, but

it’s still a challenging task to detect feature points with skeleton-

based method. 

For the model-based methods, a designed model is em-

ployed to detect the maximum response. COSFIRE (Combination

Of Shifted FIlter REsponses) are proposed for feature point detec-

tion in [20] and the response is computed as the combination of

shifted Gabor filters. Several prototypes are selective to construct

the COSFIRE filters which are effective to detect keypoints simi-

lar to prototypes. Its performance really depends on the selected

prototypes as well as vessel segmentation, and there is no able to

distinguishing between crossover and bifurcation. A probabilistic

model has been proposed in [21] . The vascular trees are divided

into independent segments and junctions are split into terminals,

bridges and bifurcations. Each junction will gain a probability from

the Bayesian model for different configurations, and maximum a

posteriori is used to assign the most likely configuration. In [22] ,

a new transformation by directional anisotropic wavelets is intro-

duced to convert images into the joint space of positions and ori-

entations in which the candidate junctions are selected based on

the geometrical properties and followed by a refinement. Finally, a

fusion step of resulting junctions and a skeleton-based method is

utilized to get better result. The vessel keypoint detector (VKD) is

proposed in [23] , which is derived from log-polar map of segmen-

tation patches. The candidate junction points are extracted by VKD

and classified using combined features of Random Forest classifier.

A hierarchical probabilistic model is proposed to detect bifurcation

points in [24] where bifurcation and normal point are classified

by the local intensity cross sections modeled by Gaussian function.

Exclusion region and position refinement (ERPR) is proposed to im-

prove the accuracy of feature point detection in [25] . This method

is based on centerline detection, trying to refine the position of

feature point by tracking back from the junction. In [26] , junc-
ions are detected by combining Hessian information and correla-

ion matrix, and the number of branches and branch orientations

re also provided by the method. 

Deep learning methods have also been applied in junction de-

ection in the recent years. Pratt et al. [27] propose a deep learning

lassification baseline for bifurcation and crossover detection. They

xtract patches for all the vessel centerline points as the junction

andidates. For each patch, they use two CNNs to classify crossover,

ifurcation or background. A multi-task framework [28] is used

n another work to learn the vessel centerline probability fol-

owed by eigen-analysis on Hessian decomposition to get poten-

ial junctions and a multi-scale intersection search is used for

efinement. 

Object detection that locates the object position with a bound-

ng box has attracted interest of many researchers recently. There

re two categories of these methods: two-stage detection and one-

tage detection. R-CNN [29] is the basis of a series of two-stage de-

ection method. It obtains region proposals by selective search and

ses a CNN model to classify and locate the object position. Instead

f feeding the region proposals into the CNN every time, Fast-

CNN [30] is proposed to detect object on the feature maps. This

mprovement makes the feature extraction only performed once

nd thus the speed is significantly increased. Faster-RCNN [31] uti-

izes a Region Proposal Network (RPN) to get regions instead of

elective search to further improve the speed, while the Mask-

CNN [32] combines the segmentation and detection task together

o get better performance. On the other hand, one-stage meth-

ds directly give outputs from the input image instead of predict-

ng object position based on region proposals. Classical one-stage

ethods include YOLO [33] and SSD [34] . YOLO (You only look

nce) is a neural network which reframes the object detection as

 regression problem and predicts the bounding box positions and

robabilities directly from images with one evaluation. SSD (Sin-

le shot multibox detector) further improves the performance and

peed of YOLO with anchors [31] and multi-scale feature maps.

he speed of one-stage framework is extremely high, although it

s weak at precise locations especially for small objects. Motivated

y the success application of these object detection methods, we

ropose a RCNN-based Junction Proposal Network to give the ini-

ial junction locations. 

. Our approach 

In this work, we aim at detecting and classifying retinal junc-

ion points directly from the raw color images. Denote the color

etinal image as I ∈ R 

W ×H×3 , the crossover positions as C i,j and bi-

urcation positions as B i,j . Our detection task is to find junction lo-

ations J i,j ( i.e. B i,j and C i,j ) on the retinal image I , while the goal

f classification is distinguishing C i,j from B i,j . Fig. 1 (a) illustrates

ur approach pipeline. The proposed approach can be divided into

wo stages: the detection stage and classification stage. There are

hree individual networks engaged, which are named Junction Pro-

osal Network (JPN), Junction Refinement Network (JRN) and Junc-

ion Classification Network (JCN). A two-step scheme that consists

f JPN and JRN is designed for detection stage. It extracts the po-

ential junctions J i,j from the original image I and eliminates the

alse detection (shown by blue boxes in Fig. 1 (a)). As to classi-

cation stage, JCN is proposed to identify crossover C i,j and bi-

urcation B i,j in J i,j (shown by green boxes in Fig. 1 (a)). Essen-

ially, JRN and JCN both are classification models but designed

or different tasks, so they share the same model structure in

his work (shown by dashed boxes in Fig. 1 (a)). JPN is a modi-

ed RCNN-based object detection model while JRN and JCN share

 multi-task classification model. In what follows, we will give

he detailed introduction to the detection model and classification

odel. 
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Fig. 1. Our approach flowchart and model structures. (a) our two-stage detection and classification pipeline. (b) RCNN-based Junction Proposal Network structure for potential 

junction extraction. Only the location regression is used for further processing. (c) multi-task classification model structure that is used both in the detection and classification 

stage (dashed boxes in (a)). 
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.1. RCNN-based junction proposal network 

Our Junction Proposal Network is based on the Mask-RCNN

odel [32] , which takes 128 × 128 image patches as input and out-

uts the bounding boxes of potential junction locations. Fig. 1 (b)

isplays the structure of our Junction Proposal Network. It con-

ists of three parts: the backbone for feature extraction; the re-

ion proposal network (RPN) for region of interest (ROI) selection;

he head module for bounding-box regression, classification and

ask generation. In our approach, only the bounding-box regres-

ion head branch will be utilized for further processing. All the

etected bounding box centers are selected as our initial junc-

ion proposals without classification score thresholding. In practice,

e use ResNet50 [35] as our feature extraction network backbone

tructure. Instead of extracting features from ResNet50 directly, a

yramid structure [36] is employed to take multiple scales into

onsideration. The generated ROIs from RPN are processed to fixed

ize feature map by ROIAlign. Finally, the head module takes the

xed size feature map as input and outputs the accurate junction

ocations. Two important components of this network, RPN and

OIAlign, will be introduced in details. 

a  
.1.1. Region proposal network 

This component takes large image patch as input and out-

uts several rectangular junction proposal locations with signifi-

ant scores. It can be modeled by a fully convolutional network.

he network conducts a convolutional operation on the feature

ap with kernel size of 3 and stride 1. The resulting features are

ollowed by two sibling 1 × 1 convolutional layers to produce two

ets of outputs that are region regression and region classification.

oreover, multiple proposals are predicted simultaneously for each

ixel on the feature map with different aspect ratios and scales,

hich are also called anchors. The final ROIs are generated from

hese anchors with top- N high confidence. 

.1.2. ROIAlign 

ROIAlign is an improved version of ROI pooling and both of

hem are used for extracting a small feature map from ROI. ROI

ooling causes misalignment when quantizing floating-number ROI

o a discrete size of feature map. It is addressed by ROIAlign with

ilinear interpolation to compute exact value of each sampling

oint. This operation removes the harsh quantization and properly

ligns the ROI with the feature map, which can greatly improve
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the accuracy of bounding box locations. Interested readers can re-

fer to [32] for detailed information. 

Up to now, we can get the junction proposals within one im-

age patch. By combining all the image patches of one image, we

can get the initial positions of junctions. These junction candidates

may contain numerous points not belonging to any kind of feature

points. So we propose a Junction Refinement Network ( i.e. classifi-

cation model) to eliminate the false positive detection. 

3.2. Multi-task classification model for junction refinement and 

junction classification 

As aforementioned, our classification model serves for junction

refinement in detection stage as well as crossover and bifurcation

identification in classification stage. In this section, we give an in-

troduction of our classification model with dual usages. This model

plays a role of binary classification that treats junction as fore-

ground in detection stage and crossover as foreground in classi-

fication stage. 

Our classification model is a multi-task convolutional neural

network which combines classification and segmentation tasks to-

gether. It takes 16 × 16 patches as input and produces vessel seg-

mentation and foreground classification simultaneously. Our clas-

sification model is shown in Fig. 1 (c). The model contains one

backbone for rough feature extraction and two branches for differ-

ent tasks of classification and segmentation respectively. Green box

shows the structure of the classification branch while the pink one

is the assistant branch (aka. segmentation branch). Blue cube indi-

cates the feature maps obtained from convolutional layers, and the

orange cube refers to the feature maps generated by the ResBlocks.

Dashed yellow cube is the feature map duplicated from previous

convolutional layer output. Two benefits can be obtained by this

design: first, the model can produce more information around the

junction area, not only the class of the patch but also the vascular

morphology; second, the segmentation information from the assis-

tant branch can help training the main branch to get more accurate

result. 

The backbone is three stacked convolutional layers with ker-

nel size [5, 5] and stride 1 to get a preliminary feature extrac-

tion. After the convolution operation, 32 feature maps are fed into

each branch for further calculation. The assistant branch consists

of 4 convolutional layers and 5 deconvolutional layers with full

skip connections. It takes the feature maps as input and outputs

segmentation of corresponding patch. The feature maps are first

downsampled into a vector by convolutional layers with kernel

size [3, 3] and stride 2, followed by sequential deconvolutional lay-

ers with kernel [3, 3] and stride 2 to upsample into original size.

Skip connections are utilized between each corresponding feature

maps to gain better performance [37] . The filter numbers are set

to 32 and 64 for the first half and the second half convolutional

layers respectively, while inversely for the deconvolutional layers. 

The main branch utilizes a residual module [35] as a basic com-

ponent to give class prediction of an input patch. Two convolu-

tional layers with kernel [3, 3] and stride 1 together with a skip

connection form the residual block, which is displayed in the top-

right of Fig. 1 (c). The feature maps from backbone pass 5 residual

blocks and are further fused with the features generated from as-

sistant branch. The concatenated feature maps are convoluted by

two convolutional layers with kernel size [3, 3, 64] and stride 1,

subsequently followed by two fully connected layers with 256 neu-

rons to get the final prediction result. 

The vascular structure is engaged for the assistant branch, but

different from other segmentation dependent method, it’s only uti-

lized in the training stage for improving the detection accuracy. In

the testing phase, the only input of our model is the raw retinal

image. The segmentation accuracy doesn’t influence our result. So
ur approach can avoid the mistakes caused by segmentation or

keletonization. 

This multi-task convolutional neural network is used in both

he refinement of detection stage (JRN) and classification stage

JCN) with different training condition. In detection stage, the JRN

liminates false detections raised by the JPN, so it is trained with

unction patches as positive samples and non-junctions as neg-

tive samples. In classification stage, positive samples change to

rossover patches while negative samples are bifurcation patches

o classify two types of feature points using the JCN. 

.3. Loss function 

unction Proposal Network 

The loss function of RCNN-based Junction Proposal Network

an be summarized as bounding-box regression loss, bounding-box

lassification loss and segmentation loss. In our case, we consider

rossovers and bifurcations together as foreground class of junc-

ions and others as background. There are 3 parallel outputs of

unction Proposal Network. The first layer outputs the bounding-

ox location l = (l x , l y , l w 

, l h ) , which indicates the bounding-box

enter pixel coordinates as well as the width and height of the

ox. The second one gives a probability value to predict each ROI

ategory, that is, junction or not. The last output is the mask of

unction points in the bounding-box. The summarized loss can be

ritten as: 

 

d = L d loc + L d label + L d mask (1)

mooth L 1 (x ) = 

{
0 . 5 x 2 | x | < 1 

| x | − 0 . 5 otherwise, 
(2)

here L d 
loc 

indicates bounding-box location regression loss that is

alculated by smooth L1 loss defined in Eq. (2) , L d 
label 

is the cross-

ntropy loss between bounding-box prediction and ground-truth,

nd L d 
mask 

refers to the binary cross-entropy loss between segmen-

ation map and ground-truth map. Compared with traditional L2

oss, smooth L1 loss is more robust and has the advantage of elim-

nating the outlier effect [30] . 

ulti-task Classification Model 

The loss of our multi-task classification model consists of two

arts: the pixel-wise difference of segmentation task loss and clas-

ification task loss. Similarly as other vessel segmentation meth-

ds, we choose pixel-wise intensity difference as the training tar-

et. As mentioned above, our classification takes patches as in-

uts. The training dataset is defined by C = { ( P i , Y i , c i ) } n c i =1 
, with

 i being the input patch and Y i being the corresponding segmen-

ation map while c indicates the patch class. It should be noted

hat c = 1 indicates the patch is junction in detection stage while

 = 1 changes its meaning in classification stage which refers to

rossover patch. Each pixel j value in P i and Y i can be written as p i 
j 

nd y i 
j 
∈ { 0 , 1 } respectively. Consider the imbalance of vessel pixels

nd background pixels, we adopt the class-balance entropy instead

f the original one [38] . So the loss function of segmentation task

an be defined as: 

 

c 
seg = −

∑ 

j 

(
αy i j log( ̂  y i j ) + (1 − α)(1 − y i j ) log(1 − ˆ y i j ) 

)
(3)

here α is used to handle the imbalance of foreground and back-

round pixels, ˆ y i 
j 

is the pixel prediction from assistant branch. For

he classification loss, the cross-entropy can be defined as: 

 

c 
cls = −

(
c i log( ̂  c i ) + (1 − c i ) log(1 − ˆ c i ) 

)
(4)
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here ˆ c i is the prediction of patch P i . So the total loss for classifi-

ation leads to: 

 

c 
total = γ L c seg + (1 − γ ) L c cls (5) 

here γ indicates the weights of these two classes. 

The JRN and JCN share the same model structure and training

trategy but they are trained separately. The weights of each net-

ork are updated with different training data, which will be intro-

uced in the following section. 

. Experiments and results 

.1. Datasets 

In our experiments, we evaluate the performance of our

roposed approach using two public datasets, DRIVE [39] and

OSTAR [22] . DRIVE dataset includes 40 images with a resolution

f 584 × 565 pixels and Field of View of 45 ◦, where the first 20

mages are for training and the other 20 images are for testing.

OSTAR is a scanning laser ophthalmoscope (SLO) image dataset

hich includes twenty-four 1024 × 1024 pixel images with a 45 ◦

ield of View. The split of training / testing images is 12 / 12. On

verage, there are 100 bifurcations and 30 crossovers per image in

RIVE and 55 bifurcations and 23 crossovers in IOSTAR. The junc-

ion ground-truths of these two datasets 1 are annotated by the au-

hors of [22] . 

.2. Data preprocessing 

In this section, the details of how to prepare training and test-

ng data for our models are described. Our approach contains two

ndividual models, one is Junction Proposal Network (JPN) and the

ther is multi-task classification model for JRN and JCN. Although

oth of them need image patches as input, the details are not the

ame. In this part, we will introduce the data preprocessing for

hese two models and the parameter setting. 

Junction Proposal Network. Retinal image patches, junction posi-

ions, and segmentation around junctions are needed for network

raining. Firstly, a retinal image and corresponding segmentation

ap are cropped into patches with a 128 × 128 sliding window.

he segmentation map is further processed with junction positions

o remove most of the vessel segments while only keeping the ves-

el patterns near junction locations. These vessel patterns provide

 mask and bounding-box training information ( i.e. ground-truth)

or Junction Proposal Network. In the testing phase, only retinal

mage patches are needed to give the initial detection results. 

Multi-task Classification Model. Detection refinement and junc-

ion classification share the same model structure. Though the two

etworks are for different tasks, the essence of them is the same.

n this case, they can share a same training pool with slightly

ifferent configuration. The pool is made up of patches extracted

rom both retinal images and segmentation maps with a size of

6 × 16, and the patches can be divided into four categories: bifur-

ation patches, crossover patches, background patches near vessels,

nd background patches far away from vessels. In bifurcation and

rossover patches, the centers are their ground-truth positions. In

ackground patches, the centers are selected on the map except

unction regions. A tolerance region is considered for each junc-

ion to reduce the offset influence. In practice, centers of junction

atches are chosen inside a five-pixel diameter of ground-truth

unctions. The refinement network handles crossover and bifurca-

ion patches as positive samples and the background patches are as
1 The datasets and junction ground-truths can be downloaded here: http://www. 

etinacheck.org/datasets . 

 

o  

s  

o  
egatives. While positive and negative samples are crossover and

ifurcation patches respectively for junction classification task. 

All the experiments are conducted on a desktop computer with

ntel Core i7 CPU and Titan X GPU. The algorithms are imple-

ented using Python with Tensorflow library. Training time for

he detection stage is 187 minutes and for classification stage is 12

inutes, while the testing time are 2.8s and 0.2s per image respec-

ively. When training JPN, we choose 9 anchors for RPN with scales

nd ratios being {4 2 , 8 2 , 16 2 } and {1:2, 2:1, 1:1}. The scales are

etermined according to the region size around junctions which

s characterized by the width of vessels and intersection angles.

hirty-two ROIs are generated by RPN for each image patch and

he bounding boxes are fine-tuned by location regression branch.

PN is trained on one GPU for 90 epochs. Only the head module of

PN is trained for the first thirty epochs with learning rate of 0.001,

hile all the layers are trained for the rest epochs with a learn-

ng rate decreased by 10. The parameters are updated with SGD

ptimizer with momentum 0.9. As to the multi-task classification

odel, it is optimized by Adam optimizer with a learning rate of

.001. The coefficients in Eq. (3) and Eq. (5) are set as α = 0 . 6 and

= 0 . 5 respectively. 

.3. Testing phase 

Once we have finished training two stage models, we can apply

t on new retinal images to detect and classify junctions. Following

he pipeline in Fig. 1 (a), a retinal image is first cropped into sev-

ral 128 × 128 patches which can cover the whole image. Then the

atches are fed into JPN to get bounding boxes around junctions.

he center of the bounding box is regarded as the junction loca-

ions and refined by the JRN to eliminate the false detection. Final

unction positions are identified after the above steps. The junc-

ions are further categorized into either crossover or bifurcation by

lassifying patches centered on junction locations with the size of

6 × 16. 

.4. Junction detection results 

The detection performance is evaluated on the two given pub-

ic datasets with other state-of-the-art methods. Table 1 displays

he quantitative results of our approach as well as other compar-

son methods on DRIVE and IOSTAR datasets. To evaluate the de-

ection performance, three evaluation metrics are considered here,

ncluding precision ( T P 
T P+ F P ), recall ( T P 

T P+ F N ) and F1-score ( 2 ·Pre ·Rec 
Pre + Rec ).

ollowing [22] and [28] , an accepted tolerance with 5 pixels is set

o accept the junctions. That is to say, the pixels in the distance

f 5 pixels to actual junction points are considered as true posi-

ive points. F1-score delivers to an overall performance summary,

recision shows how the method perform on right recognize the

unction points, while recall indicates the ability to detect the fea-

ure points. The left panel shows the performance of DRIVE, while

he right one displays the results of IOSTAR. The last two rows

how the results of our approach. One is the junction detection

irectly from JPN without refinement and the other is that junc-

ion detection refined by JRN. Performance of other state-of-the-

rt methods has been shown in the first to fifth rows. Method of

alvo et al. [10] is a skeleton-based method with topological anal-

sis. COSFIRE [20] is a model-based method using a bank of fil-

ers to detect junctions. BICROS [22] combines orientation-score-

ased method and skeleton-based method together to identify fea-

ure points. The last two [27,28] are deep learning based methods,

hich engage RBMs and CNN respectively. 

Take DRIVE dataset as an example. Compared with other state-

f-the-art methods, our final detection achieves the highest F1-

core of 0.70, which increases 4.5% than the second high method

f Uslu et al. and BICROS. Meanwhile, our approach keeps a good

http://www.retinacheck.org/datasets
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Table 1 

Quantitative evaluation of junction detection on DRIVE and IOSTAR. The comparison methods 

include Calvo et al. [10] , COSFIRE [20] , BICROS [22] , Pratt et al. [27] , Uslu et al. [28] . The perfor- 

mance is evaluated with Precision, Recall and F1-score. 

DRIVE IOSTAR 

Precision Recall F1-score Precision Recall F1-score 

Calvo et al. [10] 0.71 0.51 0.59 0.61 0.48 0.54 

COSFIRE [20] 0.40 0.74 0.52 0.63 0.33 0.43 

BICROS [22] 0.75 0.61 0.67 0.47 0.60 0.52 

Pratt et al. [27] 0.74 0.57 0.64 0.52 0.54 0.52 

Uslu et al. [28] 0.65 0.69 0.67 0.52 0.67 0.59 

Ours w/o refinement 0.42 0.78 0.55 0.36 0.71 0.48 

Ours 0.71 0.70 0.70 0.62 0.57 0.60 

Fig. 2. Visual results of our two-step detection framework and different datasets are viewed in different rows. (a) displays the junction ground-truth, the crossovers and 

bifurcations are labeled by green stars. (b) is the initial detection results of our Junction Proposal Network. (c) shows the final results by our refinement network where 

several zoomed-in patches are selected. 
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balance of the precision and recall. The recall score of 0.70 shows

that most of the junction points could be detected by our ap-

proach, precision of 0.71 indicates that the accuracy of detection

points is high. Although some other methods achieve a better pre-

cision result, we can find that the recall of their methods is not

as high as ours, which finally leads to a lower F1-score. Compared

with skeleton-based and model-based methods, the performance

of our approach shows significant improvement, which increases

0.11 and 0.18 respectively. Compared with deep learning method,

our method also outperforms them especially on the recall evalua-

tion. Following the setting in [22,27,28] , we use the model weights

trained on DRIVE directly without retraining and the results are

shown in the right panel. It seems that the deep learning meth-

ods don’t work so well on a new modality without training, which

causes almost 0.1 F1-score decreasing. We assume that the features

extracted by the model trained on DRIVE are not suitable for the

new modality dataset and this leads to a performance decrease.

Although there is some decreasing on a new modality dataset,

the performance of our approach still achieves a satisfactory re-

sult compared to others. The F1-score of our approach is 0.6 with

precision score of 0.62 and recall score of 0.57. Similar to DRIVE

dataset, the detection results have a good balance of precision and

recall, which means the model can recognize as more junctions as

possible with a satisfied accuracy. 

Turn the view into our two-step approach. The first one is our

Junction Proposal Network in the second last row. The initial Junc-
ion Proposal Network can produce a much higher recall of 0.78,

ut with a pretty low precision value of 0.42. However, this is rea-

onable because the role of this network is giving potential junc-

ion locations while it may generate large numbers of false positive

unction points. This result is still comparable with some state-of-

he-art method, such as COSIFRE. Compared with JPN, final results

enerated by JRN improve precision by 0.3, with recall slightly de-

reasing to 0.70. This added refinement step improves 27% of F1-

core compared with the initial Junction Proposal Network. 

The exemplar visual results are shown in Fig. 2 . The ground-

ruth of junction point is displayed in Fig 2 (a), while (b) shows

he detection of our Junction Proposal Network and (c) is our fi-

al detection results with zoomed-in views of some image part.

he DRIVE dataset is in the top row of the figure while IOSTAR is

isplayed in the bottom. Most of the feature points can be recog-

ized by our Junction Proposal Network. On the other hand, there

re many false alarms in (b), such as stacks of junctions detected

n such a small region or points on the vessel trunks. Most of the

alse detections are eliminated by our refined network and the de-

ection map is much cleaner with correct junction points detected.

n the zoomed-in views of selected patches, taking DRIVE as an ex-

mple, the junctions created by large vessels can be well detected

ven when there are multiple junctions in a very near region ( e.g.

ottom-left zoomed-in view of DRIVE image in (c)). The tiny ves-

el junctions can also be recognized which are shown in the top-

ight patch of DRIVE in (c). The bottom-right patch of DRIVE in
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Table 2 

Quantitative evaluation of bifurcation and crossover classification on DRIVE and IOSTAR. 

The performance is evaluated with Precision, Recall and F1-score. 

DRIVE IOSTAR 

Precision Recall F1-score Precision Recall F1-score 

Calvo et al. [10] 0.62 0.43 0.51 0.39 0.37 0.38 

Pratt et al. [27] 0.67 0.70 0.68 0.41 0.74 0.53 

Ours 0.73 0.66 0.69 0.63 0.51 0.56 

Fig. 3. Zoomed-in views of a region that contains several junctions with extra in- 

formation of segmentation. The color patches in left and right panels are retinal 

image patches centered in junctions, while the gray ones are segmentation outputs 

from our JRN. 

Fig. 4. Performance of detection on low contrast image patch containing tiny ves- 

sels. 
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Table 3 

Ablation study where results are produced by variant mod- 

els trained with different settings on DRIVE dataset. Quanti- 

tative evaluation metrics considered here include Precision, 

Recall and F1-score. 

Precision Recall F1-score 

JPN 0.42 0.78 0.55 

JPN with threshold 0.63 0.69 0.66 

Refinement w/o SEG 0.68 0.69 0.68 

Refinement with SEG 0.71 0.70 0.70 
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c) shows that the correct detection can be achieved when two

arallel vessels are close. Error usually occurs in this situation by

he segmentation-dependent methods, which is avoided by our ap-

roach. However, the detection location is not always exactly on

he position of the junctions, which can also be found on some

hick vessel trunks. In Fig. 3 , the detailed information of one ex-

mplar patch is displayed. Junctions in the patch are selected and

oomed-in together with a segmentation map coming from assis-

ant branch of our refinement network. Though the segmentation

ap is not perfect, it can produce the correct shape of selected

atch. The segmentation shows three vessel branches of bifurcation

nd four branches of crossover. This assistant branch of refinement

etwork can also be used as an indicator to determine whether the

etection is correct or not. 

To show our approach performance on low contrast regions,

xemplar detection results are illustrated in Fig. 4 , where (a) is

he low contrast image patch containing tiny vessels and (b) is

he corresponding vessel ground-truth for better view of bifurca-

ions and crossovers. Our approach is able to detect the junctions,

ven though the vessels can not be seen clearly. Most of the fea-

ure points are detected correctly in Fig. 4 , as well as the crossover

ormed by two thinnest vessels. 

.5. Junction classification results 

As long as we get the positions of junction points, we can di-

ide them into two types: bifurcation and crossover. It outputs

he segmentation and category of the input patch. The classifica-

ion results are displayed in Table 2 together with the compari-

on with the state-of-the-art methods. Our approach achieves the
est performance on both DRIVE and IOSTAR datasets with F1-

core of 0.69 and 0.56 respectively. Our classification model ob-

ains the best precision results of 0.73 on DRIVE. For the IOSTAR

ataset, it also achieves the highest precision performance of 0.63

hile the other two methods are around 0.4. Our recall score on

RIVE and IOSTAR are 0.66 and 0.51 respectively. Compared with

ur approach, method of Pratt et al. achieves a better recall value

or both datasets, but the points classified into crossovers have a

ow accuracy which is 67% on DRIVE and 41% on IOSTAR. Combina-

ion of detection rate and the detection accurate rate, our approach

s slightly better than Pratt et al. as reflected on F1-score. 

. Discussion 

.1. Refinement network 

To explain the necessity of our multi-task classification model

n the detection stage and how it works, we have carried out some

blation experiments on DRIVE dataset. In our approach, we ac-

ept all the junction locations predicted from JPN without consid-

ring the class probability of each bounding box. Another idea to

se JPN is combining the bounding box locations with thresholding

robability, just as what other RCNN-based methods [32] do. We

ompare our final result with the threshold Junction Proposal Net-

ork, and the comparison results are shown in Table 3 . The first

ow displays the performance of JPN which is the same in Table 1 .

he second row is the results of JPN with suitable threshold. The

ast row indicates our final detection performance. Choosing a good

hreshold for the JPN can get satisfied F1-score of 0.66, while the

esults of our refinement network is 0.70. Compared with our final

etection model, the threshold JPN can get a similar recall score,

hich indicates the threshold network can obtain a good recog-

ition rate. However, its precision is 0.08 lower than that of our

nal detection model. Comparison of segmentation output from

PN and our refinement network (JRN) is displayed in Fig. 5 . The

ask branch output of Junction Proposal Network tends to gener-

te vessel segmentation with indistinct edges and corners, which is

ot like a vessel shape. This phenomenon is more obvious in the

rossover segmentation, where the branches of vessels are not ex-

racted very well. While for the similar cases, the assistant branch

f our refinement network can produce more accurate segmenta-

ion according to the input patches. This advanced segmentation

esults in turn help the classification task. 
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Fig. 5. Comparison of segmentation output of JPN mask branch and JRN assistant 

branch. For each panel, the images from left to right are retinal image, segmentation 

ground-truth, segmentation from our JRN and the segmentation from JPN. 
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Our superior performance gives an explanation why our refine-

ment network can improve the junction detection performance.

We analyze this phenomenon in two aspects. From the task level,

our refinement network is designed only for classification, while

the classification and bounding box detection are both performed

for Junction Proposal Network. From the model level, our refine-

ment network is more complicated in the aspect of model struc-

ture, which means it is more powerful to deal with the complex

situation of retinal image. On the contrary, the classification and

mask branches in JPN are simple and originally designed for the

natural images that have higher contrast and easy content. 

5.2. Assistant branch 

To see how the assistant branch of our classification model in-

fluences the performance, we build our classification model in two

ways: with or without assistant branch (aka. segmentation branch).

Taking the detection stage as an example, the classification model

is used for eliminating the false positive detections and it takes

the result from JPN as input. The quantitative results are shown in

Table 3 . We observe that the model trained only with classification

task has a F1-score of 0.68, recall score of 0.69 and precision of

0.68. This performance is still better than threshold Junction Pro-

posal Network with a higher precision score. However, the model

trained with multi-task can gain much higher precision score of

0.71 with a bit recall improvement which further leads to the

highest F1-score of 0.70. The experiments suggest that the multi-

branch network structure not only can provide additional analysis

information but also can improve the classification performance. 

6. Conclusion 

In this paper, we propose a two-stage retinal junction detection

and classification framework. It works directly on the original color

retinal image without any preprocessing, such as segmentation.

This avoids the mistakes caused by segmentation or skeleton and

it is flexible to apply on any new dataset. We utilize a RCNN-based

Junction Proposal Network to locate the initial junction positions

followed by a multi-task classification model as Junction Refine-

ment Network to refine the detection. Our classification model is

specially designed for retinal images, thus it can improve the per-

formance of initial junction detection obtained by the Junction Pro-

posal Network. The same classification model is also used for clas-

sifying the crossover and bifurcation. The experiments on DRIVE

and IOSTAR shows our advantage performance among state-of-the-

art methods. Our approach can be easily applied to other medical

field with long and thin tubular structures, such as pulmonary ves-

sels, neuronal trees. Furthermore, it can also be utilized for detect-

ing lesion area, such as tumor and aneurysm. In the future work,

we will investigate our approach on other kinds of images and ex-

tent it to 3D neuron images for bifurcation detection and structure

reconstruction. 
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